[1] ZHANG K, KANG L, CHEN X, et al. A review of intelligent
unmanned mining current situation and development trend[J]. Energies,
2022, 15(2): 513.
[2] 王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技
术,2022,50(01):1-27.
WANG Guofa. New technological progress of coal mine intelligence
and its problems[J]. Coal Science and Technology, 2022, 50(01): 1-27.
[3] 张翼翔,林松,李雪.基于 CenterNet-GhostNet 的选煤厂危险区域人员
检测[J].工矿自动化,2022,48(04):66-71.
ZHANG Yixiang, LIN Song,LI Xue.Personnel detection indangerous a
rea of coal preparation plant based on CenterNet-GhostNet[J]. Journal
of Mine Automation, 2022, 48(04): 66-71.
[4] 曹健,陈怡梅,李海生,等.基于深度学习的道路小目标检测综述[J].计
算机工程,2023,49(10):1-12.
CAO Jian, CHEN Yimei, Li Haisheng, et al. Survey of Small Target
Detection on Roads Based on Deep Learning[J]. Computer
Engineering, 2023,49(10):1-12.
[5] 姜香菊,王瑞彤,马彦鸿.基于轻量级改进 RT-DETR 边缘部署算法的
绝缘子缺陷检测[J/OL].电工技术学报,1-14[2024-10-31].https://doi.
org/10.19595/j.cnki.1000-6753.tces.240171.
JIANG Xiangju, WANG Ruitong, MA Yanhong. Insulator Defect
Detection Based on Lightweight Improved RT-DETR Edge
Deployment Algorithm [J/OL]. Transactions of China Electrotechnical
Society, 1-14[2024-10-31]. https://doi.org/10.19595/j.cnki.1000-6753.
tces.240171.
[6] 林珊玲,彭雪玲,王栋,等.多尺度增强特征融合的钢表面缺陷目标检
测[J].光学精密工程,2024,32(07):1075-1086.
LIN Shanling, PENG Xueling, WANG Dong, et al. Object detection of
steel surface defect based on multi-scale enhanced feature fusion[J].
Optics and Precision Engineering, 2024, 32(07): 1075-1086.
[7] 芦碧波,周允,李小军,等.融合注意力机制的 YOLOv5 轻量化煤矿井
下人员检测算法[J].煤炭技术,2023,42(10):200-203.
LU Bibo, ZHOU Yun, LI Xiaojun, et al. YOLOv5 Lightweight Coal
Mine Underground Personnel Detection Algorithm Base on Attention
Mechanism[J]. Coal Technology, 2023, 42(10): 200-203.
[8] 寇发荣, 肖伟, 何海洋, 等. 基于改进 YOLOv5 的煤矿井下目标检
测研究[J]. 电子与信息学报, 2023, 45(7): 2642-2649.
KOU Farong, XIAO Wei, HE Haiyang, et al. Research on Target
Detection in Underground Coal Mines Based on Improved YOLOv5[J].
Journal of Electronics & Information Technology, 2023, 45(7):
2642-2649.
[9] 周孟然, 李学松, 朱梓伟, 等. 井下矿工多目标检测与跟踪联合算
法[J]. 工矿自动化, 2022, 48(10): 40-47.ZHOU Mengran, LI Xuesong, ZHU Ziwei, et al. A joint algorithm
of multi-target detection and tracking for underground miners[J].
Journal of Mine Automation, 2022, 48(10): 40-47.
[10] 邵小强,李鑫,杨永德,等.基于改进 YOLOv7 的矿井人员检测算法[J].
电子科技大学学报,2024,53(03):414-423.
SHAO Xiaoqiang, LI Xin, YANG Yongde, et al. Mine Personnel
Detection Algorithm Based on Improved YOLOv7[J]. Journal of
University of Electronic Science and Technology of China, 2024,
53(03): 414-423.
[11] CHEN C, GUO Z, ZENG H, et al. Repghost: A hardware- efficient
ghost module via reparameterization[J]. arXiv preprint arXiv:
2211.06088, 2022.
[12] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention
module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023: 1-5.
[13] DAI X, CHEN Y, XIAO B, et al. Dynamic head: Unifying object
detection heads with attentions[C]//Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2021:
7373-7382.
[14] ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection
over union loss with auxiliary bounding box[J]. arXiv preprint arXiv:
2311. 02877, 2023.
[15] HUSSAIN M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its
Complementary Nature toward Digital Manufacturing and Industrial
Defect Detection[J]. Machines, 2023, 11(7): 677.
[16] REDMON J, FARHADI A. Yolov3: An incremental improvement[J].
arXiv preprint arXiv: 1804. 02767, 2018.
[17] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal
speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.
10934, 2020.
[18] LI C, LI L, JIANG H, et al. YOLOv6: A single-stage object detection
framework for industrial applications[J]. arXiv preprint arXiv: 2209.
02976, 2022.
[19] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: Improved YOLOv5
based on transformer prediction head for object detection on
drone-captured scenarios[C]//Proce-edings of the IEEE/CVF
international conference on computer vision. 2021: 2778-2788.
[20] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object
detectors[C]//Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2023: 7464-7475.
[21] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone
that can enhance learning capability of CNN[C]//Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
workshops. 2020: 390-391.
[22] FENG C, ZHONG Y, GAO Y, et al. Tood: Task-aligned one-stage
object detection[C]//2021 IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE Computer Society, 2021: 3490-3499.
[23] KONG T, SUN F, LIU H, et al. Foveabox: Beyound anchor-based
object detection[J]. IEEE Transactions on Image Processing, 2020, 29:
7389-7398.
[24] 陈梓延,王晓龙,何迪,等.基于改进 YOLOv8 的轻量化车辆检测网络
[J/OL].计算机工程,1-13[2024-12-19]. https://doi.org/10.19678/j.issn.
1000-3428.0069122.
CHEN Ziyan, WANG Xiaolong , HE Di1, An Guocheng, et al.
Lightweight Vehicle Detection Network Based on Improved YOLOv8
[J/OL]. Computer Engineering, 1-13[2024-12-19]. https://doi.org/10.
19678/j.issn.1000-3428.0069122.
[25] Pandey S, Chen K F, Dam E B. Comprehensive multimodal
segmentation in medical imaging: Combining yolov8 with sam and
hq-sam models[C]//Proceedings of the IEEE/CVF international
conference on computer vision. 2023: 2592-2598.
[26] HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap
operations[C]//Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020: 1580-1589.
[27] CHEN C, GUO Z, ZENG H, et al. Repghost: A hardware-efficient
ghost module via re-parameterization[J]. arXiv preprint arXiv:2211.
06088, 2022.
[28] Everingham M, Eslami S M A, Van Gool L, et al. The pascal visual
object classes challenge: A retrospective[J]. International journal of
computer vision, 2015, 111: 98-136.
[29] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time
object detection with region proposal networks[J]. IEEE transactions
on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149.
|